Complete Data Warehouse Appliance Solutions

Basic Architecture of a Data Warehouse (DW) Appliance
Complete data warehouse appliances are purpose-built data warehouse solutions and systems that encompass a whole-technology stack including:
• Operating System (OS)
• Database Management System (DBMS)
• Server Hardware
• Storage Capabilities

Initially DW appliances were created with proprietary custom-built hardware and storage units. Netezza, Teradata, DATAllegro, & White Cross (now Kognito) were the first vendors to provide solutions in this manner. Subsequently data warehouse appliances evolved and started to utilize lower-cost, industry-standard non-proprietary hardware components.The movement from proprietary to commodity hardware has proven to bring down the cost of the data warehouse appliance as the commodity hardware can integrated at a lower cost of both developing and integrating proprietary hardware. Examples of commodity hardware typically include general-purpose servers from Dell, Hewlett Packard (HP), or IBM utilizing Intel processors and popular network and storage hardware from either Cisco, EMC, or Sun.

Data Warehouse Appliance - Complete Solution VendorsIntroduced 2002, Netezza was the first vendor to offer a complete data warehouse appliance, so early definitions of appliance were based upon Netezza products.  Subsequently, Netezza Performance Server still provides all of the software components of a data warehouse appliance, including the database, operating system, servers, and storage units.  However in 2009, Netezza replaced its own proprietary hardware with IBM blade servers and storage units. Further in 2010, IBM completed a corporate acquisition of Netezza.

Similar to Netezza, DATAllegro was launched in 2005 with a complete solution involving proprietary hardware. Soon after DATAllegro replaced its own proprietary hardware with commodity server from Dell and storage units from EMC. In 3008, Microsoft acquired DATAllegro in 2008 and announced it will integrate DATAllegro’s massive parallel processing (MPP) architecture into its own MS SQL Server platform, which also runs on commonly-available hardware.

Additionally, both Kognitio and Teradata replaced their proprietary hardware within their appliances in a process similar to that of DATAllegro. Kognitio now offers a row-based, in-memory database database called WX2 that does not include indexes or data partitions and runs on blade servers from IBM and Hewlett-Packard. Teradata provides a proprietary database, a variety of common operating systems (Linux, Unix, and Windows), and a proprietary networking subsystem packaged along with commodity processors and storage units.

Announced at the 2008 Oracle OpenWorld conference in San Francisco, the Oracle Exadata Database Machine is a complete package of database software, operating system, servers, and storage. The product was initially assembled in collaboration between Oracle Corporation and Hewlett Packard where Oracle developed the database, operating system and storage software, while HP constructed the hardware. However, with Oracle’s acquisition of Sun Microsystems, Oracle announced the release of Exadata Version two with improved performance and usage of Sun Microsystems storage and operating systems technologies.

At the Sapphire conference in May, 2010 in Orlando, SAP announced the release of its new data warehouse appliance called HANA or High-Performance Analytic Appliance. SAP HANA is a combination of hardware, storage, operating system, management software, and in-memory data query engine that is characterized by data being held in RAM rather than being read from disks or flash storage.

Finally IBM bundles and integrates its own Infosphere Warehouse database software (formerly “DB2 Warehouse”) with its own servers and storage to deliver the IBM Infosphere Balanced Warehouse.

Share

Data Warehouse Appliance: Oracle Exadata

Announced by CEO Larry Ellison at the 2008 Oracle OpenWorld conference in San Francisco, Oracle Exadata Database Machine is a complete database appliance with support for both transactional (OLTP) and analytical (OLAP) database systems. Delivered as a complete package of database software, operating system, servers, and storage, the Oracle Exadata Database Machine is simple and fast to implement and ready for large-scale business applications.

The product was initially assembled in collaboration between Oracle Corporation and Hewlett Packard (HP) where Oracle developed the database, operating system and storage software, while HP constructed the hardware.  However, with Oracle’s acquisition of Sun Microsystems, Oracle announced the release of Exadata Version two with improved performance and usage of Sun Microsystems storage and operating systems technologies. The main idea of Exadata is to make the storage database aware and push processing of queries down to the disks for optimal scanning and performance. Subsequently an Exadata machine can scan 1 TB of data in about 3.5 seconds by scanning several (or all) disks in parallel with Oracle’s Parallel Query technology.

Oracle Exadata Database Machine

Oracle Exadata Database Machine

Currently the Oracle Exadata Database Machine provides a solution for all types of database systems, ranging from scan-intensive data warehouse applications to highly concurrent transactional applications.  With its bundled combination of storage, database software, operating system, and standard hardware components from Sun, the Oracle Exadata Database Machine provides extreme performance within a highly-available, highly-secure environment. Additionally Oracle’s unique clustering and workload management capabilities position the Oracle Exadata Database Machine to be well-suited for consolidating multiple databases onto a single and centralized environment.

Facts and Benefits of Oracle Exadata Database Machine

•  Accelerates data warehouse query performance by at least a factor of 10x.
•  Runs more queries concurrently for faster access to business-critical information.
•  Scales to 10x more concurrent users.
•  Provides a trusted highly-available and cost-effective platform.
•  Replaces and consolidates isolated special-purpose databases into one platform.
•  Allows for massive parallel processing of data with a high-bandwidth.
•  Easily expands with the connection of multiple units.
•  Includes combination of Oracle Exadata Storage server, Oracle database software, Sun Solaris operating system (OS), and the latest industry standard hardware components from Sun.
Share

Data Warehouse Appliance: SAP HANA

At the Sapphire conference in May, 2010, SAP announced the release of its new data warehouse appliance called HANA or High-Performance Analytic Appliance. SAP HANA is a combination of hardware, storage, operating system, management software, and in-memory data query engine that is characterized by data being held in RAM rather than being read from disks or flash storage. Additionally, HANA has been built to split up queries to run in parallel on multiple processors—a fundamentally different architecture from SAP’s existing applications.  This in-memory and parallel processing architecture of HANA allows for extremely fast performance of queries and analytics on very large amounts of data.

HANA Blade ServerThe SAP HANA solution has been introduced on Hewlett Packard x86 servers (HP ProLiant DL580 G7 and DL980 G7 servers) and is built upon Intel’s multi-core servers. Moreover, a single server blade can contain up to 2TB of main memory (4TB coming soon) and up to 64 processor cores.  With this total solution, SAP claims that they beat the current performance benchmark by factor of 20, on hardware that was several dozens of times cheaper for a 200X price performance improvement. SAP also claims that HANA either reduces or out-right eliminates the need for the development and deployments of complex and expensive datamarts.

SAP intends HANA systems to be well-integrated with its own enterprise resource planning (ERP) systems, allowing for transactional data in SAP ERP systems to be analyzed in real time.  However, HANA is not dependent solely on SAP ERP systems as a data source.  Moreover,  HANA is data source “agnostic”  which means most common data sources and database can be integrated with it.

According to an SAP document, the HANA platform includes a modeling environment that is simple enough for business users to work with.  Additional, HANA supports client interfaces currently include Microsoft Excel and SAP’s Business Objects business intelligence software.

References: SAP’s Transformation: A Work-In-Progress – Part One (ChainLink Research)SAP Launches HANA for In-memory Analytics (PC World)

Share

Components of SAP BusinessObjects: QAAWS

Query as a Web Service (QAAWS) is a technique within the SAP Business Objects suite that allows for creation and publishing of web services.  Subsequently web services are utilized to integrate data between a Business Objects Universe and an Xcelsius Dashboard.  The QAAWS client tool provides the dashboard developer an intuitive wizard that to create universe queries and publish these queries as web services.  Once a web service is published, an Xcelsuis Dashboard can utilize and present that data. Fundamentally, QAAWS is an integration device between a Business Objects Universe and an Xcelsius Dashboard.

Query as a Web Service (QAAWS)

Query as a Web Service (QAAWS)

Share